Physics & Physical Science Demos, Labs, & Projects for High School Teachers

A few weeks back, my principle asked me to talk to the faculty about my experience with Standards-Based Grading.  Our professional development begins this week and I will be presenting on Tuesday (8/28/12).  This is my first public talk on the topic, I hope to present a more refined version of this talk at a conference later this year.  The slides aren’t glamorous and it’s a lot wordier than I like, but it feel the PowerPoint needs to stand on its own without me talking over it.  I’ll embellish with anecdotes and energy.

There are some comments in the note section on some of the slides, so you probably want to download the slide show rather than just view it directly on Dropbox.  I’ve also included an annotated set of spreadsheets that I will be using during the presentation.  Hover over the commented cells to see my thoughts on the patterns that show individual student development.

https://www.dropbox.com/sh/s9f2r2jjko65ehs/5ooodjg10L

I would really appreciate any feedback, negative in particular.  If you find slides are unclear, confusing, any typos, or if I’m you think I’m missing something, I need to hear from you.

My father just sent me this TED Talk.  He doesn’t read my blog and didn’t know about the other TED Talks I posted.  This one is a little different, Ramesh Raskar from MIT has developed a camera that can slow motion down to the point of being able to see a pulse of light travel.  You just have to see it to believe it.

And in case you aren’t seeing the embedded video:

http://www.ted.com/talks/ramesh_raskar_a_camera_that_takes_one_trillion_frames_per_second.html

I do.  They frustrate me a bit because there are just so many and I don’t know most of the speakers.  You can spend an evening jumping from one talk to the next.  I prefer recommendations, here are two I recommend.

The first talk is by Dan Meyer of the dy/dan blog.  His blog was the source I used to get started on Standards-Based Grading.  Plain and simple, this talk is an eye opener.

The second TED Talk is by Simon Sinek.  His talk was recommended by Frank Noschese at the AAPT meeting.  Excellent recommendation Frank.

If you have some favorite TED Talks, please share the link or the name of the speaker.

Tags:

I’ve been a member of American Association of Physics Teachers for about 6 years now.  If you teach physics, please join!  The journals and posters alone are worth the tax deductable annual dues.  I attended my first AAPT meeting a couple of weeks back.  I learned one or two great new things, met some super people, but I was also a bit disappointed.

Let’s get the negative stuff out of the way.

  • I’m used to NSTA, so maybe my reference is unfair.  AAPT was small, really small for a national conference.  I felt like everybody knew each other because it was the same people every year.  You could get through the entire exhibit areas in about an hour.
  • It also felt like the conference was aimed at college educators.  I know the organizers claim it’s not, but I’m giving my opinion here based on attending one day of a much longer conference.
  • I had hoped that the talk on video in the classroom would give lots of useful tips; how to integrate video, success at flipping the classroom, etc.  Most of the discussion was why video lectures won’t replace colleges.

Now the positives:

  • The first timer special and lunch was a great idea.  Lunch and the company was terrific, I’m glad I went.  The first timer $75 one-day special is a great way to try it out.
  • I got to meet some great people, some new, some who I had previously met online (Kathy, Frank).  Everybody was warm and there to interact and learn from each other.
  • I met local AAPT members who are trying to suck me in to local activities.  I am interest, but they always do them on a Friday night and Saturday.  I may submit, I do need local physics buddies but I love my weekends.
  • Andy Rundquist demonstrated a great use of Jing.  He has his students take a picture of their homework, then narrate the work on video.  The video is their homework submission.  Jing limits them to 5 minutes and when they talk, you can immediately tell if they know what they are talking about.  Andy has them do this for every homework, I’m going to use it sparingly.  Super idea.
  • There is free software out there called Tracker that does video analysis.  One cool use was to take a moving object, like a person jumping into the water, identify several points (hands, feet, head) through each frame, and let the software determine the center of gravity and plot  the motion.  Did I mention free?
  • I really like the sessions where there is a new presenter every 10 minutes.  Lots of great stuff, and if it isn’t, it’s only 10 minutes until the next one.

AAPT was worth my time, I wish I had done the entire week.  It was close enough to home that I was able to take public transportation.  Here’s the problem: if you can get your school to pay for you to travel to one national conference, which do you choose – AAPT or NSTA?

For me, it would be an easy choice.  NSTA has so much more to offer, so many more strands, talks, exhibitors, and people to interact with.  I would love to do both, I don’t see how.  I will get involved locally, AAPT is too good of an organization to ignore, they are worthy of our support.

Tags:

This is not a new topic for me, it’s been a burr in my saddle for some time now.  All of the introductory physics textbooks address significant figures in much the same way.  The problem is – nobody in the “real world” uses sig figs.  At the same time, introductory physics isn’t the time to introduce complex error analysis models.

I’m having this discussion with Andy Rundquist of Hamline University.  I asked Andy how they handled this at the college level.  He told me they don’t teach significant figures and pointed me to a very lengthy article discussing why significant figures are all wrong.  The article suggests the use of Monte Carlo analysis its place.  That may make sense on a lab, but not on classwork and homework problems.  The uncertainty article did have a suggestion; use six significant figures for calculations and round the final answer to three sig figs.  The article does a good job explaining the reasoning, and I’m fine with it.  The three extra “guard digits” preserve the accuracy, and the rounding makes the answer more reasonable.

The next step is trying to explain uncertainty and significance of our data.  I came up with an activity I think will work:

  • I will project an archery target on the board.
  • Students will move back about 20 feet and shoot a round of Nerf darts at the target.  They will be far enough back that most of them will shoot a 6, or 7 and not a 9 or 10, at least at first.  Each student will take a turn.
  • We will plot the overall results.  We should get something resembling a normal distribution curve, but I won’t tell them that.
  • I will ask the kids to average the data and come up with a value of x.x +/- y.y and start a discussion on whether or not that represents the data.
  • We will then put a ring or other object on an electronic scale and write the mass with the error in the same way.
  • After some discussion, I will bring up slides of normal, rectangular, triangular, and maybe exponential distribution curves.  I want them to discuss the fit of the models to the data.
  • My goal is that they understand that error is probability.
  • About a week later we will drop rulers and calculate individual reaction times.  This would be a good time to bring back the distribution graphs and perhaps even input our data into a statistical analysis program to find the best fit.

I think this will work and go over well.  I’d love some feedback.  It’s a first pass, what did I miss?

REVISED:

I’m not one to reblog.  Once in a while I get an email asking me to post something.  I usually ignore the request or politely tell them, “No thanks.”

This is from one of those spamish emails I get.  I have searched the site and it links mostly to University of Phoenix.  Regardless, ignore the rest of the site if it bothers you, but the article is worth your time.  It’s called the “25 Female STEM Superheroes of Today”, here is the link: (http://www.onlineuniversities.com/blog/2012/06/25-female-stem-superheroes-today/).”

I know if you asked me to list influential female scientists and engineers, I’d be very hard pressed to name five, let alone twenty-five.  It’s kind of a shame, but it’s nice to know someone is keeping score.

This is me. It’s been a good year.

This has been an incredible year for my students and me.  They continue to give me unsolicited positive feedback over the courses and me as a teacher.  I’m not going to lie, it feels great to know they appreciated me.  The students have seen a direct correlation between their effort and their grade, no more learned helplessness.  Even better, they’ve really learned the material.  I’ve become a better teacher by doing less and letting the students control their outcome.  It’s the kind of story you want to shout from the mountaintops.

So how does a year of SBG wind down?  The AP exam is done, so the students are done, right?  Nope, they are working harder than ever and I’ve become an observer.  Those last few concepts that we started in the fourth quarter were probably the hardest of all.  The kids want those grades to improve.  Every day, they come into class, join up with a classmate or two, meet at the whiteboard and work out problems on whatever concept they want to improve.  This has been going on for over two weeks now and it blows my mind.  The routine has been to stop when there is 15 minutes left in the class.  They erase the boards and I hand out a concept quiz to anyone who wants one.  Everyone is working bell-to-bell and I’m sitting back and watching them help each other master integration.  This is teacher heaven.  As we enter the last week of school, I’ll allow two concept quizzes in a day, not just one.  The quizzes have to be on two different concepts.  Its crunch time and they are feeling it.  I don’t want to pull the rug out from under them now.

First time through using SBG is a hell of a lot of work.  I’d say I got 80% of it right, the other 20% needs tweaking.  Some of my early quizzes were too hard, others were too easy.  I gave some insane quizzes on domain and range.  I’m sticking with WebAssign for Calculus, but I’m giving it up for Physics.  I’ve added a few inquiry labs to my physics routine and I’m hoping to add one or two more next year.  Calculus has been officially approved for the AP label, but honestly, the class isn’t going to be much different.

The biggest difference to me is the connections I have made with these students.  Usually by now I want them gone.  Not these kids.  I don’t think they are really much different from previous years students.  I think the real difference is the way they were mentored through the classes, rather than just lectured to.  I have more students going on to study engineering than in any previous year.  When the pressure of every quiz or test is gone, the classroom becomes more relaxed.  This year we covered more material in every course and had a lot more fun doing it.  Best of all, I have relationships with these kids that are stronger and more lasting.  I’m going to miss them but I’m also going to keep in touch.

I can’t wait to do it all over again in September.

What’s New in 2013/2014?

Every year brings a change, this one is no exception.

I will be picking up the sophomore honors Algebra II class to keep them separate from the juniors. This should help accelerate them and put them on a stronger track towards Calculus. Looks like there will be only one section each of Physics and Calculus, but still two of Robotics & Engineering.

Hot topics this year are going to be the Common-Core Standards, Standards-Based Grading (SBG), improving AP Calculus scores, and somehow adding Python, maybe as a club.

Polls in the sidebar

Just a quick poll to help me understand who is stopping by my blog.

Yeah sure, lots from America, but look who else is here…

If you are badly in need of more email or for some reason jonesing for a physics fix, enter your email address so I can bother you with my newest rant on science.

Join 213 other followers

Blog Stats

  • 858,239 hits by nerds like me since June 1, 2008
April 2014
M T W T F S S
« Jan    
 123456
78910111213
14151617181920
21222324252627
282930  
Follow

Get every new post delivered to your Inbox.

Join 213 other followers